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SUMMARY

A method is described from which the interaction of an elastic structure
with an infinite acoustic fluid can be determined. The displacements of the
structure and the pressure field of the immediate surrounding fluid are modeled
by finite elements, and the remaining pressure field of the infinite fluid
region is given by an analytical expression. This method yields a frequency
dependent boundary condition for the outer fluid boundary when applied to the
frequency response of an elastic beam in contact with an acoustic fluid. The
frequency response of the beam is determined using NASTRAN, and compares
favorably (1-2% error) to the exact solution which is also presented. The
effect of the fluid on the response of the structure at low and high frequencies
is due to added mass and damping characteristics, respectively.

INTRODUCTION

The interaction of an acoustic fluid with an elastic solid has received
considerable attention in the literature. Some areas of investigation in the
frequency domain include underwater vibrations, vibrations of liquids in elastic
containers, and the evaluation of the near and far pressure field of an
acoustical fluid surrounding a sinusoidally excited elastic structure. A finite
element modeling of the combined problem was formulated by Zienkiewicz and
Newton (ref. 1). Their finite element modeling of the displacements of a
structure and the pressure field of a finite acoustical fluid leads to a
‘system of unsymmetric linear equations to be solved.

Problems involving a finite domain can at least conceptually (and usually
practically) be modeled using finite elements (see ref. 2, for example), but
those problems involving an infinite fluid domain must necessarily be modeled
with only a finite portion of the fluid if the finite element method is to be
used. The appropriate boundary condition at the truncated fluid boundary is
often in doubt. Zienkiewicz and Newton (ref. 1) suggest a system of dashpots
at this outer fluid boundary, but it will be shown that this is the proper
boundary condition only in the high frequency limit. This paper formulates the
the boundary condition that should be applied at this outer boundary, and shows
how this condition is incorporated into the finite element method. To this end,
the fluid is divided into a region immediately surrounding the structure (which
is to be modeled by finite elements) and an infinite region. Within the
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infinite region a series expansion is chosen for the pressure, the coefficients
of which are unknowns of the problem. Hunt et al (ref. 3) have a similar
model, except the pressure field in the infinite region is given by the sur-
face Helmholtz integral equation. In any case, the expression for the pressure
field in the infinite region identically satisfies the governing wave equation
and the proper boundary conditions at infinity.

A variational principle, presented specifically for a beam with one face
in an acoustical fluid, suggests the proper coupling not only between the
structure and the fluid but also between the finite and infinite fluid regions.
If a coordinate surface is chosen as the outer fluid boundary, orthogonality
relationships of the series expansion may be used to satisfy continuity of the
pressure field at this boundary. This orthogonality allows the coefficients of
the series expansion to be eliminated as unknowns from the problem, and results
in an additional stiffness matrix for the nodal pressures on the outer boundary.
This matrix is full, symmetric, and frequency-dependent, and is implemented in
NASTRAN by direct matrix input.

This method is applied specifically to the frequency response of a simply
supported beam with one face in contact with an infinite acoustical fluid (2-D
problem). The exact solution for the frequency response of the beam is
presented, and the finite element results compare favorably with the exact
solution. It is also shown that at low frequencies the effect of the fluid on
the structure is an added mass, while at high frequencies it is a damping.
Moreover, the far field pressure in the infinite region can be determined from
the series expansion once the nodal pressures at the outer fluid boundary are
known.

While this method is applied for a 2-D frequency response, it can be
generalized to the response of a 3-D elastic structure in an infinite acoustic
fluid. The outer surface of the fluid must be a coordinate surface of a space
in which the wave equation is separable since the orthogonality of the series
expansion on this surface is used. Once again, the structure and the portion
of the fluid between the structure and this coordinate surface are modeled by
finite elements. Unfortunately, the additional stiffness matrix couples all
the pressure nodes at the outer boundary, and, in general, is frequency
dependent. If the frequency is specified, the additional stiffness matrix is
known, although in general it could increase the bandwidth of the problem. On
the other hand, for determining the submerged natural frequencies of structures
an iterative procedure is necessary since the natural frequency is unknown.

A VARIATIONAL PRINCIPLE

It is convenient in applying the finite element method to have a varia-
tional principle on which the discretized finite element model can be based.
Such principles involving the displacements of an elastic structure can be found
in references 4 and 5; similar principles for fluid mechanics problems are
presented by Olson in reference 6. Gladwell (refs. 7, 8, 9) presents varia-
tional theorems for the acoustic fluid for both pressure and displacement

252




\

formuiﬁtlons For the coupled structural-fluid problem, a suitable variational
formulation can be found by properly comblnlng those for an elastic structure
and an acoustic fluid. Such a principle is a reliable basis and guide for
numerically solving a fluid-structure problem using finite elements. Moreover,
with the fluid divided into a finite region (modeled by finite elements) and an
infinite region (fluid described by an analytical expression), the variational
formulation will necessarily point to the proper coupling of each.

Finite Fluid Region

A simply supported beam is shown in figure 1 which has one side in contact
with a finite acoustic fluid and subjected to a sinusoidal load per unit length
of w(x)eift, The deflection of the beam in the y-direction, u(x)eiat,
satisfies the differential equation
4

U nely = - p(x,00h + w(x) (1

[a¥®
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dx

where E is the modulus of elasticity of the beam, I is the moment of inertia,
m is the mass per unit of length of the beam, and h is the depth of the beam in

the z-direction. The pressure p(x,y)eltt of the fluid region A satisfies the
wave equation

EEE.+ EEE.: _l_§32_= } 93 (2)
7 7" 2 12 7P
x“  ay“ ot c

where ¢ is the speed of sound in the fluid. It is also assumed that
P=0 ons (3)
on

where S, shown in figure 1, is the boundary of A excluding the beam's surface.
On the surface of the beam, it is also necessary to enforce (see refs. 1, 2)
the condition, which comes from conservation of momentum, that

%I;—=~pﬁ=p§22u ony =0 4)

where p is the density of the fluid.

It is possible to formulate a mixed variational principle that will incor-

porate both equations (1) and (2) and the appropriate boundary conditions for
each. Consider the functional F(u,p) given by
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The first two terms are the strain energy and kinetic energy of the beam,
respectively. The next two terms are minus the work done by the pressure and
forcing function on the beam, and the last two terms represent the kinetic and
potential energies of the fluid, respectively. The functional F is a function
of both the structural displacements u and the fluid pressure p. If independent
variations of F are taken with respect to u and p, it follows that

brodt 2
8F(u,p) = [ [?I ——%—— mQ~u + ph - w(x)]éu.dx
0 dx .
2 2 2
- 12 <a g £ 2 g) + pZ sphdA + EI g~%—6u' (6)
Al pnR”™ \ox dy pC dx 0
S :
d"u 1 ap 1 3p ]
- EI —=%é8u| + i sphds + | [————- + ul éphdx
o 0”5 M0 0 [ oa® ™
If u and p are found such that
§F(u,p) = 0 7
with any trial function u satisfying
u(0) =u®) =0 (8)

then it can be seen from equation (6) that u and p necessarily satisfy
equations (1) and (2) and the boundary conditions given by equations (3) and
4.

Coupling of the Infinite Fluid

If the region of the fluid is infinite, as shown in figure 2, the fluid is
subdivided: the finite element description of the pressure in the fluid is used
in a finite region Ay surrounding the structure, and an analytical expression
(which identically satisfies the wave equation) is used in the remaining
infinite region A;. In order to properly couple the two solutions, the pressure
field must be continuous and consistent with the variational principle. The
functional F(u,p) in equation (5) now contains two additional terms which are
the same as the last two terms but integrated over the remaining infinite
region. The analytical expression for p in this region satisfies the proper
boundary conditions at infinity (Somerfeld radiation condition). Variations of
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F taken with respect to u and p in both regions give
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where s is the boundary between the finite and infinite fluid regions. With
the analytical function p identically satisfying the wave equation, the
coefficient of &p in the next to last term is identically zero. Hence, only
the term

I= —lé—f %E—-Gpllds (10)
pl S S

which is the loading of the infinite region on the finite must be included. In
the integral I, p is given by an analytical expression which must match the

finite element nodal approximation on the fluid-fluid interface. Assume the
analytical expression for p is given by an expansion

N

P L A CoY) (11)

where the A,'s are undetermined coefficients and the functions f;(x,y)
identically satisfy the wave equation. Equation (11), together with the finite
element description of the pressure at the interface and the continuity of the
pressure field, will permit the integral in equation (10) to be evaluated. The
continuity of the pressure field can be easily obtained by choosing an outer
boundary on which the orthogonality of the functions f,(x,y) can be used. The
evaluation of equation (11) will be carried out specifically for the frequency
response of a beam in an infinite fluid.

FINITE ELEMENT FORMULATION
Beam and Neighboring Fluid

The finite element method approximates the displacements u of the beam
by
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u =1 N; u. (12)

where u. is a generalized nodal displacement, and NS is a shape function for
the displacements of the beam. Similarly, the presdure field in the fluid is
approximated by

p=ZIN
i

i Py (13)

where p; is a nodal pressure. Substituting these approximations into equation
(6) and interpreting equation (7) to mean that partial derivatives with respect
to nodal displacements and pressures should equal zero, the following set of
equations is determined:

K L u‘ 2 M 0 u f
-9 = (14)
1 1.T 1
0 Hi{p -=L ——Ql|(p 0
F QZ pCZQ2
where
L S S
= [ Bl —5 —%- dx 15
13 p dxz dxz (15)
Y s.s
M = m_(f) Ny Ny dx (16)
%
£f. = [ wx)N? dx (17)
1D
2S5
L.. = J/'NYN. hdx 18
ij é ij (18)
N aNg aN; aN?
Hij - £ X 93X * Jy 93y hdA (19)
Q.s = / NE AL hda (20)
ij 4 177 '
Multiplying the second set of equations by (pcﬂ)z gives
K L u 7 M 0 u f
2 - 2.T = (21)
0 oc’HJ(p -(pc)"L” oQd1p 0

This form is the same as that derived by Zienkiewicz and Newton (ref. 1), but
equations (21) are based on a variational principle. The set of equations (11)
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can be generated by NASTRAN as outlined in reference 2, although matrices L and
LT are inputted directly by DMIG cards.

For more complicated geometries and structures, the form of equation (21)
is unchanged. While the variational principle and the finite element formula-
tion were given specifically for the elastic beam-acoustic fluid problem, they
can be easily generalized to account for an elastic structure bounded by an
acoustic fluid.

Infinite Fluid Coupling Matrix

The loading of the infinite fluid on the finite portion is found by
computing the integral

1 (3
I=—-[2 sphds (22)
sz s an2

over the outer fluid face (see eq. (10)). This integral is to be discretized
and then added to the set of equations (14). At the fluid-fluid interface the
pressure is given by

Nipi (23)

where N;j is the shape function for the pressure in the fluid evaluated at the
fluid- f1u1d interface, p; is a nodal pressure on the face, and M is the number
of pressure nodes at the fluid-fluid interface. The ép in equation (22) 1is
equal to the partial of p with respect to pj (which is equal to Nj from equation
(23)). Then the term

_17 j & PN nds (24)
S

is added to the pj equation of equations (14).

Consider the frequency response of a beam with one side immersed in an
infinite acoustic fluid, as shown in figure 3. Both the displacements of the
beam and the pressure field of the neighboring acoustic fluid are modeled by
finite elements. The pressure field in the fluid for y>b must be bounded and
satisfy

2 2

3p,3p. _(ﬁ)zp (25)
2 2 c

ox“ 3y

with the boundary condition that
p=0 at x=0 and x =2 (26)

and the condition that only waves outgoing from the structure are allowed.



Separation of variables leads to the following expression for p:

N -
p= T Asin (X" (27)
n=
with
2 _ 2 Q.2
o= P - O (28)

The N arbitrary coefficients A, are yet to be determined, and o may be either
real or imaginary depending on n and Q.

The integral in equation (22Z) can now be evaluated. From equation (27),

N “a.b
% .. = ¢ A sin @ e D (29)
an oy y=b n=1 n 2 n

Substituting equation (29) into the expression (24), the following matrix
expression is added to the left-hand side of equations (14):

L [G]{A} (30)
PR

where {A} is a vector of the N coefficients Aj and [G] is an MxN matrix given
by
b

— in(3™Xy, e
Gij é N; sin(=; )aje dx (31)

The number of unknowns in equation (14) has been increased by N, the number

of A; coefficients. An additional set of equations to make the set complete is
founé by requiring the pressure to be continuous; that is, equation (23) must
match equation (27) evaluated at the interface y=b:

M N . nmTx -OLnb
I N.p. = £ A sin(—e (32)
i=1 1} g1 B b
Multiplying both sides by
. kmx
51n0770

and integrating from 0 to & with the orthogonality condition that

0 n#k
[*sin@®) sinMY ax = | (33)
z v

gives
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{A} = [R]{p} (34)

where [R] is an NxM matrix and is given by

. > eaib
ij 3

¥ N sin 3™ & (35)
o %

The additional N equations from equation (34) form a complete set with equations
(14) and (30). Alternatively, equation (34) can be used to eliminate the

series coefficients A: from the expression (30) in favor of the nodal pressures
of the fluid-fluid inlerface. Thus,

L [614Ar = L5 [6][R]{p}
[s19} pfd

Define
[H'] = [G][R] (36)

with matrices [G] and [R] given by equations (31) and (35). The effect of the
~infinite fluid on the finite is to add to the fluid stiffness matrix [H] of
equations (14) the matrix [H']. [H'] is an MxM symmetric matrix which may be
complex. It is full, frequency-dependent and couples just the nodes at the
outer fluid boundary.

If >0 or equivalently c+«, the effect of the infinite fluid on the
finite fluid is one of stiffness. From equation (28),

0.+ as 00 (37)
] L
Gij ~age Fij (38)
where
= L 7 J_TB(_
F.lj (f) N; sin(7)dx (39)

The matrix [F] does not depend on the frequency Q. Similarly,
aib

2e
Rij-+ 7 Fij as Q-0 (40)

Then matrix [H'] = [G][R] is given by

N
L
Hij = kﬁl Gik Rkj (41)

ro
19,1
O



Substituting equations (37), (38), and (40) into equation (41) gives

N
H} -2 KEFyy Fo (42)
Ttk D |

where [H'] is a constant matrix (independent of frequency) and is added
directly to the stiffness matrix [H] of the fluid. If the outer finite element
boundary is chosen to be the surface of the beam, then the matrices [H] and [Q]
of equation (14) are zero. Then the second set of equations (14) can be
written, with the matrix H' now included, as

o] ) + Ll =0
o

This gives
pt = -p? 1 L

Substitution of this equation into the first set of equations (14) gives the
following added mass matrix:

M1 = oLl '] LT (43)

Matrix [M'] is symmetric and full and shows that the effect of the fluid on the
structure is added mass.

When @+« or c+0, the effect of the infinite fluid on the finite is a
pure damping. For, from equation (28),

where i is v-1. Then

_E Frx Fsk (44)

[H'] is a pure imaginary matrix, linear in @, which is to be added to the
stiffness matrix [H] in equation (14). Then rewriting equation (14) in the

form of equation (21) gives
u u 2 M 0 u f
-Q 2 T = (45)
P -(pc) L oQd {p 0

where [B] is an MxM damping matrix and an element of matrix [B] is given by

P

B = r F,F. (46)
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The coefficient F;:, defined in equation (39), is equal to (&/2) times the jth
Fourier sine coefticient of the shape function Nj. Hence the sum of terms on
the right-hand side of equation (46) is the dot product of the Fourier
coefficients of the function Ny with Ng. It can be shown that this dot product
is equal to (2/2) times the inner product of the shape function Ny with Ng over
the length of the beam. Thus,
N
2
=7 I F,F

)
rs %4y sk -(J; Ny N dx (47)

This term is identical to the one suggested by Zienkiewicz and Newton (ref. 1),
which is a boundary condition derived by assuming that the pressure in the
fluid takes the form of a plane wave. The boundary condition is to be applied
at a boundary which has been placed 'far enough'" from the structure and is the
proper boundary condition only in the high frequency limit.

If the outer fluid boundary is reduced to that of the beam, then both

matrices [H] and [Q] in equation (45) are zero. Solving the second set of
equations (45) for {p} in terms of {ul} gives

tp} = pc(ai) [B] LTI u) (48)
Substituting this equation into the first set gives

[K]{u} + (@i)pcL[B] Y[LT](u} - ®MI{u} = (£} (49)

Then the matrix
oclL] [B] L]

is a damping matrix, which means that the effect of the fluid on the structure
at high frequencies (or small c) is damping.

EXACT SOLUTION - FREQUENCY RESPONSE OF BEAM

The differential equation of motion for the elastic beam shown in figure 3
subjected to a uniform load varying sinusoidally in time is

m3%+m3%+ (x,0,0)h = w e "t (50)
ol M PO

where p(x,y,t) is the acoustical pressure which must satisfy the wave equation

2 2 2

d dp_ 103

—g— + = 7—% (51)
ax ayz c” ot
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A solution for u of the form

e o]

ulx,t) = I A un(m’—’%th (52)

n=1
is chosen, where the A 's are undetermined coefficients of sin 935—, which are
the out-of-fluid eigenvectors for the simply supported beam. Equation (51) is
solved using separation of variables. The pressure field is bounded and the
boundary condition at x=0 and x=¢ is that p=0. Allowing only outgoing waves
from the beam leads to the following equation for p:

[ee]

p= & C 51n(
n=1

oy -

where

2 _ nm2 Q.2
%nh T (j{) (EJ
The C,'s are undetermined coefficients to be found by properly coupling the
fluid and the structure. At the fluid-structure interface, one requires (see,
for example, ref. 2)

éR: - U =
™ pu at y=20 (59

Since the fluid and structural modes are uncoupled for this problem, equation
(54) yields

C = -2 A (55)

Substituting equation (55) into equation (53), and the expressions for u and p
into equation (50), gives

z { (m+2y0? + BTN }A sin(@Meift _  Giat (56)
1 n n A

n= 0

with
2 _ nmn 2 Q42
o =) - Q@

When both sides are multiplied by sin ( Xy and integrated from 0 to & to take
advantage of orthogonality relatlonshlps the solution is

u(x,t) Al,l sin nTTX lﬂt (57)
n—1,3, ..
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2 -ay .
p(x,y,t) = I S B8 g gipMX e M eth

58
n=1,3,..°n n . (58)
with 4w0
A = (59)
N pe-of e 2 + pr N4
an A
and
2 _ mnm. 2 Q2
a = ) - @ (60)

In general o, may be real or imaginary depending on the driving frequency Q. If

< 1c
Q'SZ,

then for all n, ay is real. In this case the pressure and displacement are real
and in phase and no radiation occurs. If Q> (wmc/%), then for some n, becomes
imaginary. In this case, both u and p are complex and out of phase and hence
radiation may occur.

Peaks in the frequency response will occur at the in-fluid natural
frequencies of the beam. Although the in-fluid and in-air mode shape of the
beam are unchanged in this particular problem, the natural frequency of the beam
does change. The in-fluid natural frequencies are found by setting the term in
brackets in equation (56) equal to zero and solving for @. The solution always
giges Qn < (nnc/2), which means that the in-fluid modal shapes of the beam do not
radiate.

RESULTS

Computations were carried out by NASTRAN using the finite element-
analytical method previously described. A typical grid is that shown in
figure 3, where CBAR elements were used to model the beam and 2-D isoparametric
elements (with quadratic approximation for the pressure) were chosen to model
the fluid. The usual double numbering of grid points at the fluid-structure
interface is necessary with this formulation (this procedure is outlined in
ref. 2), and the nodal pressures and displacements of the interface are coupled
through matrix [L] of equation (14). This matrix is entered into NASTRAN by
DMIG cards. The frequency dependent matrix [H'] defined in equation (36), which
models the effect of the infinite fluid on the finite, is also inputted into
NASTRAN by DMIG cards. The results shown in figures 4 through 8 are for the
following values: h = 2.54 cm (1 inch), % = 50.8 cm (20 in.), c = 1.460 km/sec
(5.748 x 104 in/sec), E = 206.8 GPa (3x107 psi), I = 3.468 cm? (.08333 in%),
m = 7.827 g/cmd (7.324x10-4 1b-secZ/in%), o = 1.029 g/cm3 (9.633x10-5 1b-sec?/
ind), wg = 1.751 N/cm (1 1b/in). The solid line in each of these figures is

N~
(22
(V8]



the exact solution given by equations (57) through (60). The finite element
solution is shown at specific plotted points.

Figure 4 is a plot of the magnitude of the pressure at the center of the
beam versus the driving frequency ¢. The pressure peaks at approximately
1062 rad/sec and 11350 rad/sec, which are the in-fluid natural frequencies of
the beam for modes n = 1 and n = 3 (these values can be determined by solving
equation (56) for Q@ with wy = 0). There is a discontinuity in the slope of the
curve for @ * 9029 radians?sec, which is the frequency at which radiation
occurs (@ = nmc/L = 9029 rad/sec). For frequencies greater than mc/%, energy is
being carried away by the outgoing pressure waves and the beam is said to
radiate. In this case net work is done by the forcing function.

Figures 5 and 6 are plots of the magnitude of the beam's displacement at
its center as a function of the driving frequency Q. 1In figure 6 the displace-
ment shows the discontinuity in slope that the pressure exhibits when the beam
begins to radiate. As Q goes through =nc/%, the displacement of the beam
increases corresponding to the reduction in pressure.

The variations of the phase angles of the pressure and displacement with
frequency are shown in figures 7 and 8, respectively. For @ s wnc/% (9029
rad/sec), the displacement is in phase (or 180° out of phase) with the driving
force and no work is done. For @ > mc/%, the displacement is out of phase with
the driving frequency and radiation occurs. The only exception to this
condition occurs when Q approaches a natural frequency. The mode shape for that
frequency dominates, and, since the in-fluid mode shapes of the beam do not
radiate, the phase angle of the displacement is in phase (or 180° out of phase)
with the driving force.

Figures 4-8 show that the finite element solution obtained through NASTRAN
was reliable in modeling the elastic beam in the infinite acoustical fluid.
The errors of the results shown were 1-2% for the grid shown in figure 3. The
same accuracy was also obtained at a few frequencies in which the outer fluid
boundary was chosen to be that of the beam (that is, b=0). 1In these cases,
matrix [H'] (defined in eq. (36)) corresponds to the nodal pressures at the
fluid-structure interface.

For the limiting case of @ -0, the effect of the fluid on the structure is
an added mass; this effect is approximated within the finite element method by
modeling the structure with NASTRAN and adding to the mass matrix generated by
NASTRAN the additional mass matrix [M'] given by equation (43). The natural
frequencies and mode shapes of this computation agreed favorably (less than 1%
error) with those from the exact solution. The exact solution is determined
from equation (56) by solving for o with wg = 0 and c»w=,

CONCLUSIONS

The boundary condition at the truncated fluid boundary of an infinite
acoustical fluid is, in general, frequency dependent. TFor a finite element
formulation this condition leads to a stiffness matrix [H'] which is added to
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the stiffness matrix of the fluid. [H'] is a full, symmetric, complex,
frequency dependent matrix which couples the infinite region to the finite
region and involves only the outer boundary nodes. If the driving frequency is
specified (in the case of frequency response), the coupling matrix [H'] can be
inputted into NASTRAN by DMIG cards. The computation of eigenvalues and eigen-
vectors, on the other hand, would necessarily involve an iteration scheme since
the frequency of the mode shape is not known.

Although only the portion of the fluid immediately surrounding the
structure is modeled by finite elements, the infinite fluid region is
effectively modeled through the coupling matrix [H']. Moreover, the far field
pressure can be determined once the outer boundary pressures are computed.

This pressure is given by equation (27) with the series coefficients {A}
determined from equation (34). If a finite portion of the fluid is modeled
without including the boundary condition matrix [H'], then the fluid region is
actually a finite domain. Not only is it impossible to determine the far field
pressure but also some of the eigenvalues and eigenvectors found can be shown
to be associated with the finite problem. These additional modal values do not
appear if [H'] is included.

This type of finite element-analytical solution, presented here for a
two-dimensional problem, can be readily generalized to a three-dimensional
problem of modeling an elastic structure in an infinite acoustic medium. In
this case the outer fluid boundary would be a sphere, and the pressure field
would be given by an expansion of spherical harmonics. The frequency dependent
matrix could be generated in NASTRAN by program modifications and would be
accessed through DMAP alters. Unfortunately, because of the full coupling of
all the outer boundary nodes, the increase in the bandwidth for a three-
dimensional problem might make the computer cost prohibitive.
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Figure 3. Finite Element Grid Shcwing Both the Fluid and Beam
Elements. Nodal Pressures of the Fluid and Nodal Dis-
placements of the Structure are the Unknowns.
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— Exact Solution [Eq. (58)]
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Figure 7. Phase Angle of the Acoustical Pressure at the Center of
the Beam as a Function of the Driving Frequency Q.
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Figure 8. Phase Angle of the Normal Displacement of the Center
Beam Point as a Function of the Driving Frequency Q.
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